Direction Conecta
Logo Subs Conecta
Conecta 2025: o grande evento de inovação e tecnologia para reparadores é aqui.
Explosão Conecta
WhatsApp
Jornal Oficina Brasil

Jornal Oficina Brasil é reconhecido como o maior veículo de comunicação com conteúdos técnicos, dicas e fórum de discussão para oficina mecânica.

E-mail de contato: [email protected]

Atalhos

NotíciasComunidade

Outros Assuntos

RotaMarcas na OficinaImagem das Montadoras

Fórum Oficina Brasil

Conheça o FórumAssine o Fórum Oficina Brasil

Jornal Oficina Brasil

Conheça o JornalReceba o Jornal na sua Oficina
Oficina Brasil 2025. Todos Direitos ReservadosPolítica de Privacidade
Jornal Oficina Brasil
Início
Notícias
Fórum
Treinamentos
Para indústrias
Vídeos
Conecta 2025
Jornal Oficina Brasil
EntrarEntrarCadastre-se
Jornal Oficina Brasil
EntrarEntrarCadastre-se

Notícias

Página Inicial
Categorias

Vídeos

Página Inicial
Categorias

Fórum

Página InicialTópicos Encerrados

Assine

Assine nosso jornalParticipe do fórum
Comunidades Oficiais
  1. Home
  2. /
  3. Consultor OB
  4. /
  5. Influência do Overlap do comando de válvulas para o preenchimento de ar no interior do cilindro

Influência do Overlap do comando de válvulas para o preenchimento de ar no interior do cilindro


O motor de combustão interna por centelha é constituído de elementos mecânicos, com a função de gerar movimento angular, gerenciado por uma unidade de comando

Jordan Jovino
19 de fevereiro de 2024

O motor de combustão interna transforma a energia química do combustível em energia mecânica. O motor é construído de componentes como pistões, virabrequim, cabeçote, comando de válvulas, válvulas de admissão, válvulas de escape, tuchos, engrenagens, sensores, atuadores etc. O motor é uma bomba de ar, no qual a combinação de combustível e centelha resultam na combustão, e através da combustão temos a rotação do motor. Para que a rotação não seja de forma descontrolada, uma unidade de comando gerencia a rotação do motor através do avanço de ignição. (Fig.1)

 Motor de 4 tempos

O ciclo operacional do motor de combustão OTTO é constituído de 4 tempos, denominados de admissão, compressão, expansão e escape. Um ciclo completo do motor precisa de duas voltas do eixo virabrequim, resultando em 720º graus, sendo assim cada fase do motor corresponde a 180º graus. O primeiro tempo do motor é a fase de admissão de ar e combustível, nesta fase o pistão desloca-se de PMS (Ponto morto superior) para PMI (Ponto morto inferior). O segundo tempo do motor é a fase de compressão do ar, em que toda massa de ar aspirada é comprimida, nesta fase o pistão desloca-se de PMI para PMS. (Fig.2)

Coeficiente de compressão

Para um motor de coeficiente de compressão e=10, figura 3, a pressão de compressão logo após o disparo de ignição pode atingir picos de pressão de até 100 bar de pressão e temperaturas de 400 °C no interior do cilindro, em condições de temperatura de admissão do ar de 40°C e pressão de combustível de 4 bar. O terceiro tempo do motor corresponde à fase de expansão, devido à reação da combustão uma força é gerada forçando o movimento descendente do pistão de PMS para PMI. O quarto tempo do motor é a fase de escape, o morto parte de PMI em movimento ascendente para PMS expulsando os gases do produto da combustão. (Fig.3)

Diagrama de válvulas de admissão e escape

O diagrama de válvulas, figura 4, é uma representação gráfica do momento de abertura e fechamento da válvula de admissão, bem como abertura e fechamento da válvula de escape. O comando de válvulas é sincronizado com o eixo virabrequim por uma correia dentada ou corrente, portanto em qualquer deslocamento do eixo virabrequim, será deslocado o eixo comando válvulas, ambos possuem frequências diferentes de rotação, devido à diferença do diâmetro das polias de cada eixo. O diagrama de válvulas é um gráfico de representação de um ângulo de 360° graus, o gráfico possui deslocamento do pistão de PMI para PMS e vice-versa. 

Podemos analisar no diagrama que a válvula de admissão se abre entre um range de 10º a 15° graus antes do pistão chegar em PMS, observamos que a válvula se abre 15° APMS (Antes do ponto morto superior), e seu fechamento ocorre entre 40° a 60° depois do PMI, portanto a válvula de admissão se fecha 60° DPMI (Depois do ponto morto inferior). Analisando o gráfico do diagrama de válvulas, o curso completo da válvula de admissão é um mínimo de 230° graus e máximo de 255° graus.

Podemos verificar que a abertura da válvula de escape se inicia entre 40° a 60° antes do pistão chegar em PMI, logo a válvula de escape no momento da exaustão se abre 60° graus APMI (Antes do ponto morto inferior), em seguida depois de cruzar o PMI o pistão segue para o movimento ascendente empurrando os gases da combustão. O fechamento da válvula de escape ocorre entre 5° a 20° graus depois do PMS, ou seja 20° DPMS (Depois do ponto morto superior). O ciclo completo da válvula de escape, de acordo com o diagrama de válvulas, se encontra em valor mínimo de 230° graus e valor máximo de 260° graus. (Fig.4).

Sobreposição de válvulas (Overlap)

O efeito do ângulo de sobreposição de válvulas (overlap), figura 5, contribui para a eficiência volumétrica do cilindro. Este efeito ocorre no final do ciclo de exaustão com o início do ciclo de admissão, este momento é aquele em que as duas válvulas se encontram ao mesmo tempo abertas. Podemos verificar, na figura 2 do diagrama de válvulas, o início da admissão entre 10° a 15° APMS, neste período a válvula de escape que está em fase de exaustão ainda continua aberta, encerrando o ciclo entre 5° a 20° DPMS. O overlap possui um ângulo total entre 15° a 35° graus de sobreposição de válvulas. A válvula de admissão abrindo antes do PMS reduz a perda de carga, melhorando o enchimento do cilindro. A válvula de escape fechando depois do PMS reduz a elevação de pressão no interior do cilindro. (Fig.5)

Válvulas de admissão e escape

As válvulas de admissão e escape se encontram no cabeçote do motor, são acionadas pelo comando de válvulas através dos cames. As válvulas têm a função de comandar o fluxo de dos gases desde sua entrada e saída do cilindro do motor. As válvulas são constituídas de duas partes sendo a cabeça e a haste, a cabeça é em forma de tulipa construída geometricamente para favorecer o fluxo dos gases, e a haste é responsável pelo acionamento. A cabeça da válvula de admissão é maior que a cabeça da válvula de escape. (Fig.6)

Frequência de rotação do comando de válvulas

O motor, para entrar em funcionamento, precisa vencer as resistências dos elementos mecânicos para manter uma combustão controlada e funcione em regime de marcha lenta, sem o acoplamento do trem de força e transmissão. A rotação de marcha lenta de um motor em média é de 900 RPM, esta rotação é medida pela engrenagem do eixo virabrequim através do sensor de rotação do tipo indutivo, efeito hall ou magneto resistivo. A rotação do eixo de comando de válvulas também pode ser lida, desde que o eixo de comando de válvulas possua engrenagem e um sensor de Fase do tipo hall. A frequência de rotação do eixo comando de válvulas é a metade da rotação do eixo virabrequim, logo para uma rotação de 900 RPM para o eixo virabrequim, teremos 450 RPM no eixo comando de válvulas. 

A equação de frequência é constituída das seguintes variáveis.

F=1/T

Onde:

F= Frequência 

1= Constante

T= Período

Os motores de combustão interna necessitam de ar para seu funcionamento, este é um dos principais elementos para o bom funcionamento do motor, sua mistura homogênea com o combustível, aliado com a ignição proporciona, combustão, transformando este processo em energia mecânica, gerando movimento angular no virabrequim e proporcionando torque nas rodas. Para um bom rendimento do motor, quanto mais ar admitido e retido dentro do cilindro melhor será sua eficiência, quanto mais ar dentro do motor mais combustível será injetado. A capacidade máxima de um motor aspirado em admitir ar é limitado pela pressão atmosférica ambiente, à eficiência volumétrica de um cilindro se dá pela capacidade de admitir ar atmosférico em seu interior. O fluxo do ar no motor se dá pela entrada da tubulação em local estratégico para a captura do ar, este passará por um filtro de ar, corpo de borboleta, coletor de admissão, cilindro, e em sequência coletor de escape. Para que a dinâmica do ar seja possível, necessita-se de diferentes pressões entre o interior do cilindro e coletor de admissão, provocando um arraste de ar devido aos deltas de pressões.

Para o ar entrar com velocidade alta no cilindro é necessária uma perda de carga por resistência de passagem de ar pela válvula de admissão, pois se a válvula abrisse de forma que o ar escoasse com facilidade a velocidade do ar seria baixa assim como sua turbulência, ou seja menor número de Mach. (Fig.7)

NOTÍCIAS RELACIONADAS
Consultor OB
Consultor OB
Detalhes técnicos do motor FPT 2.0 turbodiesel 16V Multijet II que equipam os modelos Renegade e Toro
Consultor OB
Consultor OB
Competência e equipamentos são aliados necessários para executar um serviço eficaz
Consultor OB
Consultor OB
Motores aspirados, turbo e híbridos: Um guia técnico para mecânicos